ABDULLAH GUL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT COURSE DESCRIPTION AND SYLLABUS

Course Name	CODE	SEMESTER	T+L Hour	CREDIT	ECST
MEDICAL IMAGING	ECE541	FALL-SPRING	3+0	3	10

Prerequisite Courses None

Course Type	Elective
Course Language	English
Course Coordinator	Assoc. Prof. Dr. İsa YILDIRIM
Lecturers	Assoc. Prof. Dr. İsa YILDIRIM
Course Assistants	
Course Objectives	This course will provide a detailed review of imaging principles and instrumentation of all the conventional clinical imaging systems, including X-ray radiography, computerized tomography (CT), gamma camera, SPECT, PET, ultrasound (US), Doppler US, Magnetic Resonance (MR) and functional MR (f-MR).
Learning Outcomes	 A student who has taken this course has learned basic characteristics of imaging systems in diagnostic radiology, recognizes commonly used imaging systems and their operating principles, recognizes which system will provide the most helpful diagnostic images for a specific patient
Course Content	 General characteristics of imaging systems; X-ray and CT: general principles, interaction of X-rays with tissues, contrast agents, imaging techniques, image reconstruction, radiation dose; Nuclear Medicine: general principles, radionuclide, radioactive decay, gamma camera, imaging techniques, SPECT, PET; Ultrasound imaging: general principles, interaction of acoustic waves with tissue, acoustic impedance, instrumentation, scanning modes, artifacts, blood velocity measurements, contrast agents; MR imaging: general principles, nuclear magnetism, magnetic resonance, instrumentation, imaging sequences, contrast agents, imaging techniques, functional MRI.

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES				
Week	Subjects	Preliminary		
1	Introduction to biomedical imaging			
2	General characteristics of imaging systems			
3	X-rays, X-ray film, instrumentation			
4	Computed tomography, instrumentation			
5	Fourier slice theorem, Radon transform			
6	Iterative methods in image reconstruction			
7	Limited view angle imaging and digital breast tomosyntheis			
8	Midterm, Nuclear medicine, radioactivity			
9	Gamma camera, SPECT, PET, instrumentation			
10	Image reconstruction, clinical applications			
11	Ultrasound, wave propagation and acoustic impedance, instrumentation			
12	US imaging characteristics, scanning methods and modes, Doppler US			
13	MR imaging, magnetic resonance, Larmor frequency, relaxation			
14	Slice selection, phase/frequency encoding, imaging sequences, functional MRI			
15	Project presentations			
16	Final Exam			

SOURCES

Course Notes	Lecture notes and slides
	Course Textbook: Introduction to Biomedical Imaging, Andrew R. Webb, IEEE Product No.: PC5893, IEEE Press and John Wiley & Sons, Inc., 2003, ISBN: 0-471-23766-3.
Other Sources	 Additional Materials: 1. Medical Imaging Electronics, Krzysztof Iniewski, Wiley 2009, ISBN: 9780470391648. 2. Biomedical Imaging, K. M. Mudry, R. Plonsey and J. D. Bronzino (Eds.) CRC Press 2003, ISBN 0-8493-1810-6.

COURSE MATERIALS SHARING				
Documents	Lecture notes and slides			
Homeworks	3 Homework assignments			
Exams	1 Midterm and Final Exams			

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Midterm	1	30				
Term Project	1	15				
Homework	3	15				
SUB-TOTAL						
Contribution of Semester Study		60				
Contribution of Final Exam		40				
TOTAL		100				

Course Category				
Sciences and Mathematics	%25			
Engineering	%75			
Social Sciences	%0			

RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
No	Program Qualifications	Contribution Level				
		1	2	3	4	5
1	The skills of using mathematics, science and engineering information in advanced research					X
2	The skills of analyzing, designing and/or implementing an original system that will be able to solve an engineering problem,					X
3	The skills of using the required software, hardware and modern measurement equipments in their field of research,				X	
4	The skills of planning independent research and implementing in detail,				Χ	
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level,					X
6	The skills of innovative and interrogative thinking and finding original solutions					Х

*From 1 to 5, it increasingly goes.

ECTS / WORK-LOAD TABLE					
Activities		Duration (Hour)	Total (Work-Load)		
Course Length (Including exam week: 16x total course hour)	16	3	48		
Out-of-class Study Time (Pre-study, practice)	16	2	32		
Internet search, library work, literature search	16	1	16		
Homework	3	30	90		
Midterms	1	60	60		
Final	1	60	60		
Total Work-Load			306		
Total Work-Load / 30			306/30		
Course ECTS Credit			10		